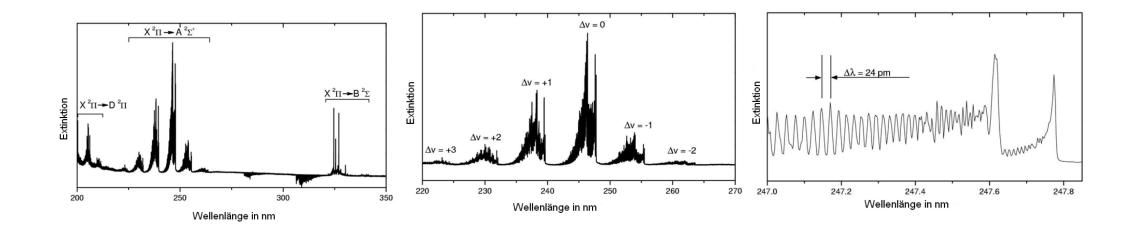
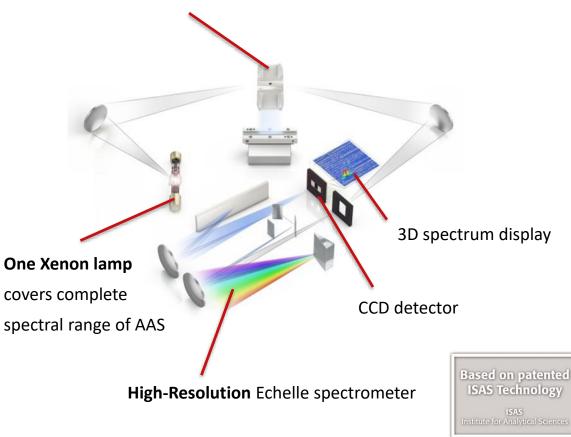

Speaker: Dr. Siqi Sun, Application Scientist at Analytik Jena US

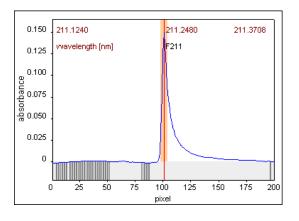
High-Resolution Continuum Source Molecular Absorption Spectrometry

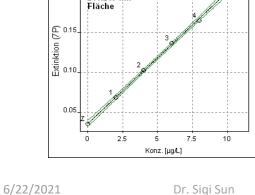
- Atomic absorption techniques are based on the absorption of atomic spectral lines by gas-phase atoms in their ground electronic states. The atomic vapor is usually generated thermally in a flame (flame AAS) or graphite furnace tube (furnace AAS).
- Direct determination of nonmetals, such as fluorine, is impossible because their resonance lines are located in the vacuum-UV range
- Conversion of Fluorine into characteristic, diatomic molecules
- ✓ GaF, CaF, AIF, SrF ...
- ✓ Species-independent->Total Fluorine
- ✓ Speciation through extraction and purification methods (SPE and HPLC)





- Coupling of Electronic transitions, Vibrational and Rotational fine structures (example: PO)
- Full width at half maximum similar to atomic absorption/emission lines → Selectivity, Specificity → high resolution





- HR-CS AAS: Analytik Jena contrAA 800 G
 - Xenon light source : Any wavelength available for analysis (185-900 nm)
 - CCD detection: spectral resolution 2 pm at 200 nm
 - Wide working range: 0.3 μ g/L– 100 mg/L(GaF)

GaF 211.248 nm

Dr. Siqi Sun

F

211.248 nm

0.20

Flame or Graphite Furnace atomizer in Dual configuration available

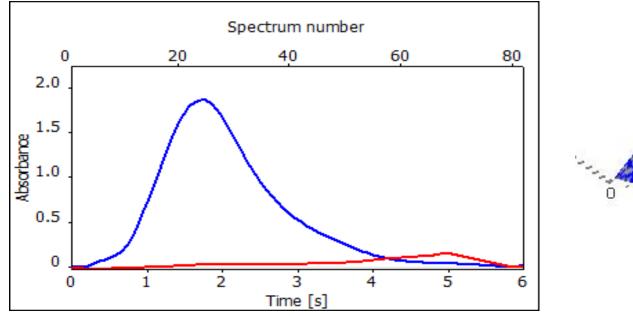
Molecule	Wave-length [nm]	No. of eval. pixels	T _{Pyr.} [°C]	T _{Atomis.} [°C]	Ramp [°C/s]	Meas. time [s]	Modifier	Baseline correction
GaF	211.248	5	500	1450	1200	5	5 μL Pd/Mg/Zr modifier* 5 μl Ga solution* 3 μl Ga solution 5 μl Ba solution	IBC

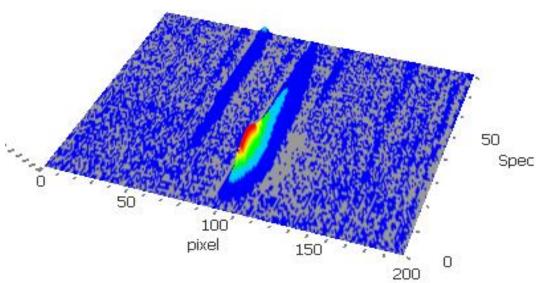
0	*	News	Temp.	Ramp	Hold	Time	Ga	as	1:	E/D	ſ					_
Step	Step * Name	* Name	[°C]	[°C/s]	[s]	[s]	Purge	Add.	inj.	Inj. E/P	6	F			4	2
1		Drying	80	6	5	13.3	Max	Stop			-	211.248	nm			
2		Drying	100	6	5	8.3	Max	Stop			5_	Area			<i></i>	
3		Drying	160	10	5	11.0	Max	Stop			_pixel			3		
4		Drying	350	25	10	17.6	Max	Stop			ີ ສີ 4_ ມ			<i>.</i>		
5		Drying	1100	500	12	13.5	Max	Stop		*	8		2 /		1 1	
6		Drying	70	NP	10	10.0	Max	Stop			1 de 3-					
7		Drying	80	2	10	15.0	Max	Stop	*		Absorbar 2				- - 	
8		Drying	110	5	15	21.0	Max	Stop				-+				
9		Pyrolysis	250	50	5	7.8	Max	Stop			1_	<i>\</i>	/			
10		Pyrolysis	500	200	5	6.3	Max	Stop								
11		Gas adaption	500	0	5	5.0	Stop	Stop			0_	Ý		44		
12		Atomize	1450	1200	5	5.8	Stop	Stop				0 10	0 200 3	00 40	0 500	
13		Clean	2450	1200	4	4.8	Max	Stop					Conc. [µ	g/L]		

analytikjena An Endress+Hauser Company

Calibration Strategy

Calibration Set	Component	Ratio
Inorganic F	NaF	
Organic F	PFOS, PFOA, HFPO-DA	1:1:1
Inorganic and organic mixture	NaF, PFOS, PFOA, HFPO-DA	1:1:1:1


Name	Conc.	Inorganic F	Organic F	Inorganic and organic mixture
Unit	μg/L	Abs	Abs	Abs
Cal-Zero1	0	0.1727	0.1154	0.1709
Cal-Std1	125	1.6650	0.5177	1.1601
Cal-Std2	250	3.0402	1.0367	1.7833
Cal-Std3	375	4.4542	1.4847	2.4628
Cal-Std4	500	5.9955	1.9403	3.0694
R ²		0.9993	0.9999	0.9808
LOD (µg/L)		7.737	12.58	4.00


- Different signal response of organic and inorganic Fcompounds depends on their thermal stability
 - Volatile PFAS partially lost during drying and pyrolysis steps of furnace program
 - Inorganic F is thermally stable during these steps
- Calibration standards should have composition similar to samples

Spectra of Inorganic and Organic Mixture Calibration Standard

- Low background absorbance (red)
- Clear, interference-free GaF absorbance signal (blue)

Samples	Conc. (µg/L)	Recovery (%)
D.I. water	<loq< td=""><td></td></loq<>	
QC standard	127.6	99.7
QC standard spike with 125 ppb TF*	252.6	85.0
QC standard spike with 100 ppb NaF	380.9	167.1
Wastewater	1936.5	
Wastewater (1:50) spike with125 ppb TF*		86.1

 QC standard solution (24 fluorinated organic compounds mixture, TF around 128 ppb)

 Mix of org. and inorg. F for calibration provides best approximation of analyte characteristics

- Good recovery for QC and waste water with TF* spike
- Overestimation of inorg. F due to high thermal stability

*TF = NaF, PFOS, PFOA, HFPO-DA (ratio 1:1:1:1)

QC standard	Conc. (µg/L)	RSD of 5 replicates
Test 1-Week 1	127.6	3.8 %
Test 2-Week 2	113.8	3.0 %
Test 3-Week 3	120.2	2.7%
Average Conc.	120.5	
RSD of three tests	5.7%	

Three tests all used Test 1's calibration curve without recalibration.

- 1. Optimized furnace program to provide high sample throughput and accuracy
 - Sample analysis time: 3.5 minutes/measurement
 - QC average recovery rate 99.7 % by inorganic and organic mixture calibration strategy
- 2. Highly sensitive method: low LOD, 4ppb
- 3. Easy operation:
 - No cleaning steps required
 - Dilution and spike can be easily achieved with the autosampler

- Thermal stabilization of volatile organic fluorinated compounds
- Optimize and simplify sample preparation for Absorbable Organic Fluorine (AOF) and Extractable Organic Fluorine (EOF) analyses of wastewater

Thank you for your attention!

He was

-

100

Provide Statement

San San

Æ

-

ARRENT STREET

211/1

...